
Oracle MySQL and Entrust
KeyControl
Integration Guide

10 May 2022

Contents
1. Introduction. 3

1.1. Requirements . 3

1.2. High-availability considerations. 3

1.3. Product configuration . 3

2. Procedures . 4

2.1. Installation overview . 4

2.2. Install the Entrust KeyControl Server . 4

2.3. Create the KMIP Tenant for Oracle MySQL in KeyControl . 4

2.4. Create the KMIP Certificates . 6

2.5. Install the Oracle MySQL server . 7

2.6. Install the keyring_okv plugin . 7

2.7. Import the KeyControl KMIP Certificates to the keyring_okv plugin 8

2.8. Verify that the keyring_okv plugin is working . 9

2.9. Use keyring_okv plugin to create encrypted tables . 10

2.10. Test that encryption KeyControl is working . 11

2.11. Secure the MySQL database . 13

Oracle MySQL and Entrust KeyControl Integration Guide 2/15

1. Introduction
Oracle MySQL Enterprise Server is compatible with the Entrust KeyControl solution. This

document describes the configuration of Oracle MySQL Enterprise Server 8.0.29 for

integration with the Entrust KeyControl 5.5 key management solution. Entrust

KeyControl can serve as a key manager MySQL encryption by using the open standard

Key Management Interoperability Protocol (KMIP).

1.1. Requirements

• Entrust KeyControl version 5.5 or later.

An Entrust KeyControl license is required for the installation. You can obtain this

license from your Entrust KeyControl and Oracle MySQL account team or through

Entrust KeyControl customer support.

• MySQL Enterprise Server 8.0.29 or later.

1.2. High-availability considerations

The Entrust KeyControl solution uses an active-active deployment, which provides high-

availability capability to manage encryption keys. Entrust recommends this deployment

configuration. In an active-active cluster, changes made to any KeyControl node in the

cluster are automatically reflected on all nodes in the cluster. For information about the

Entrust KeyControl solution, see the Entrust KeyControl Product Overview.

1.3. Product configuration

The integration between the Oracle MySQL Enterprise Server, Entrust KeyControl, and

nShield HSM has been successfully tested in the following configurations:

Product Version

CentOS Linux 8 4.18.0-383.el8.x86_64

Oracle MySQL Enterprise Server 8.0.29

Entrust KeyControl 5.5

MySQL Keyring_okv library 1.10

Oracle MySQL and Entrust KeyControl Integration Guide 3/15

https://docs.hytrust.com/DataControl/5.5/Online/Content/Books/aaCommon/Product-Overview/KeyControl.html

2. Procedures

2.1. Installation overview

Follow these steps to integrate Oracle MySQL Enterprise Server with Entrust KeyControl.

1. Install the Entrust KeyControl Server.

2. Create the KMIP Tenant for Oracle MySQL in KeyControl.

3. Create the KMIP Certificates.

4. Install the Oracle MySQL server.

5. Install the keyring_okv plugin.

6. Import the KeyControl KMIP Certificates to the keyring_okv plugin.

7. Verify that the keyring_okv plugin is working.

8. Use keyring_okv plugin to create encrypted tables.

9. Test that encryption KeyControl is working.

10. Secure the MySQL database.

2.2. Install the Entrust KeyControl Server

Follow the installation instructions for the Entrust KeyControl Server installation and

configuration. These instructions can be found in the Entrust KeyControl Integration

Guide located in the Entrust Documentation site. Search for the Entrust KeyControl

nShield HSM Integration Guide, which documents the setup process. Set up the

KeyControl server as a KMIP server according to the guide.

This solution uses external key management. The KeyControl server is

the KMIP server and Oracle MySQL is the KMIP client.

2.3. Create the KMIP Tenant for Oracle MySQL in
KeyControl

To use external key management, MySQL requires an external key management server

such as the Entrust KeyControl server. Certificates are required to facilitate the KMIP

communications from the KeyControl server to Oracle MySQL and conversely. To be able

to create these certificates, you need to have the KMIP tenant for the application in

KeyControl.

Now that Entrust KeyControl is installed, create a KMIP Tenant in KeyControl for Oracle

MySQL:

Oracle MySQL and Entrust KeyControl Integration Guide 4/15

https://entrust.com/documentation

1. Log in to the KeyControl instance.

Point your browser to the KeyControl administration URL: http://xx.xxx.xx.xxx

2. Log in as secroot and go to the KMIP page of the application:

3. Select Actions > Create a KMIP Tenant.

The Create a KMIP Tenant dialog appears.

4. In the About tab, enter the tenant name information:

a. For Name, enter OracleMySQL.

b. Optionally, enter a Description.

5. Select Next.

6. In the Admin tab, provide an Active Directory:

a. For Active Directory, select Other Active Directory.

b. In Active Directory Domain, select "+".

The KMIP Active Directory Domain dialog appears.

c. For Domain Name, enter the name of the domain. For example, : example.com.

d. In Domain Controllers, select "+".

The Add Domain Controller dialog appears.

For Server URL, select LDAP and enter the FQDN/IP of the Active directory

server: xx.xxx.xx.xx.

Then select Save and Close.

e. Select Save and Close on the KMIP Active Directory Domain dialog.

f. For Admin, select User.

g. For Name, enter the name of the Active Directory user that will be the

administrator of the tenant: htuser@example.com.

h. For Email, enter the email of the administrator user.

i. Select Create.

The new KMIP tenant is created and appears in the list of tenants.

7. Select the tenant to see its details.

Oracle MySQL and Entrust KeyControl Integration Guide 5/15

http://xx.xxx.xx.xxx

8. Copy the Tenant Login URL.

The tenant login URL will be used to log in to the Tenant Administration page in

KeyControl.

2.4. Create the KMIP Certificates

To be able to establish trust between the KeyControl and Oracle MySQL, you must create

certificates in KeyControl and upload/import them into the configuration of Oracle

MySQL.

Entrust tested using certificates without password protection. The

MySQL online documentation describes the steps needed to use a

password-protected keyring_okv key, see Password-Protecting the

keyring_okv Key File.

1. Access the KeyControl web interface using the Tenant Administration URL you

copied in the previous section.

2. Log in using the Tenant administrator user that you configured during the tenant

creation process: htuser@example.com. Provide the user Active Directory password.

3. Select Security > Client Certificates.

The Manage Client Certificate dialog appears.

4. Select "+" on the right to create a new certificate.

The Create Client Certificate dialog appears.

5. In the Create Client Certificate dialog, enter the following information:

a. For Certificate Name, enter a name for the certificate: keyringokv.

b. For Certificate Expiration, set the date on which you want the certificate to

expire.

Oracle MySQL and Entrust KeyControl Integration Guide 6/15

https://dev.mysql.com/doc/mysql-security-excerpt/8.0/en/keyring-okv-plugin.html#keyring-okv-encrypt-key-file
https://dev.mysql.com/doc/mysql-security-excerpt/8.0/en/keyring-okv-plugin.html#keyring-okv-encrypt-key-file

c. Select Create.

The new certificate appears in the Manage Client Certificate dialog.

6. Select the certificate and select Download to download the certificate.

The certname_<datetimestamp>.zip downloads. This file contains a user

certification/key file called certname.pem and a server certification file called

cacert.pem.

7. Unzip the file so that you have these files available to upload to the MySQL server.

After you create and download these certificates, you need to upload or import them

into the MySQL server. First, Install the Oracle MySQL server.

2.5. Install the Oracle MySQL server

The process for installing the Oracle MySQL Enterprise Edition depends on the operating

system on which you are installing it. See the Oracle online documentation for details on

how to install Oracle MySQL Enterprise Edition in your environment.

2.6. Install the keyring_okv plugin

The keyring_okv plugin is a KMIP 1.1 plugin for KMIP-compatible back-end keyring storage

products, such as Entrust KeyControl. It is available in MySQL Enterprise Edition

distributions.

The configuration directory used by keyring_okv as the location for its support files

should have a restrictive mode and be accessible only to the account used to run the

MySQL server. For example, on Unix and Unix-like systems, to use the

/usr/local/mysql/mysql-keyring-okv directory, the following commands, executed as root,

create the directory and set its mode and ownership:

cd /usr/local
sudo mkdir -p mysql/mysql-keyring-okv/ssl
sudo chmod -R 750 mysql
sudo chown -R mysql mysql
sudo chgrp -R mysql mysql

To be usable during the server startup process, the keyring_okv plugin must be loaded

using the --early-plugin-load option. Also, set the keyring_okv_conf_dir system variable to

tell keyring_okv where to find its configuration directory. Edit the /etc/my.cnf file and add

the plugin into the mysqld section:

[mysqld]
early-plugin-load=keyring_okv.so
keyring_okv_conf_dir=/usr/local/mysql/mysql-keyring-okv

Oracle MySQL and Entrust KeyControl Integration Guide 7/15

https://dev.mysql.com/doc/refman/8.0/en/installing.html

2.7. Import the KeyControl KMIP Certificates to the
keyring_okv plugin

The certificates must be installed before running the keyring_okv plugin, so that the

plugin can be initialized.

1. Import the certificates into the configuration directory for the keyring_okv plugin.

The following files need to be imported:

◦ A <cert_name>.pem file that includes both the client certificate and private key. The

administrator needs to open this single file and paste the two sections of the file

into the cert.pem and key.pem files in the /usr/local/mysql/mysql-keyring-okv/ssl

directory.

▪ The client certificate section of the <cert_name>.pem file includes the lines

"-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE-----" and all text

between them.

Open or create /usr/local/mysql/mysql-keyring-okv/ssl/cert.pem and paste

"-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE-----" and all text

between them into this file. Make sure it has a carriage return at the end of

the file.

▪ The private key section of the <cert_name>.pem file includes the lines "-----

BEGIN PRIVATE KEY-----" and "-----END PRIVATE KEY-----" and all text in

between them.

Open or create /usr/local/mysql/mysql-keyring-okv/ssl/key.pem and paste

"-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE-----" and all text

between them into this file. Make sure it has a carriage return at the end of

the file.

◦ A cacert.pem file, which is the root certificate for the KMS cluster. It is always

named cacert.pem.

This file needs to be copied to /usr/local/mysql/mysql-keyring-okv/ssl/CA.pem.

2. In the configuration directory, create a file named okvclient.ora. It should have

following format:

SERVER=xxx.xxx.xxx.xxx:5696
STANDBY_SERVER=xxx.xxx.xxx.xxx:5696

STANDBY_SERVER is optional.

For example:

Oracle MySQL and Entrust KeyControl Integration Guide 8/15

SERVER=198.51.100.20:5696
STANDBY_SERVER=198.51.100.21:5696

3. Set the permissions on these files:

cd /usr/local/mysql/mysql-keyring-okv
sudo chmod -R 750 mysql .
sudo chown -R mysql .
sudo chgrp -R mysql .

4. If the firewall is running open up the firewall for port 5696.

As the root user on the mysql server:

% firewall-cmd --zone=public --add-port=5696/tcp --permanent
% firewall-cmd --zone=public --add-port=5696/udp --permanent
% firewall-cmd --reload

5. Disable selinux the next time the server reboots.

To do this, in the /etc/selinux/config file set SELINUX=disabled.

To disable on the current shell:

% sudo setenforce 0

6. After completing the preceding procedure, restart the MySQL server:

% sudo systemctl restart mysqld
% sudo systemctl status mysqld

It loads the keyring_okv plugin, which uses the files in its configuration directory to

communicate with KeyControl.

2.8. Verify that the keyring_okv plugin is working

After configuration is complete and you restarted MySQL to load the keyring_okv plugin,

look in the /varlog/mysqld.log logs to make sure there are no errors when connecting to

KeyControl. To verify the plugin installation, with the MySQL server running, examine the

INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement. For example:

Oracle MySQL and Entrust KeyControl Integration Guide 9/15

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS FROM INFORMATION_SCHEMA.PLUGINS WHERE PLUGIN_NAME LIKE 'keyring%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| keyring_okv | ACTIVE |
+-------------+---------------+
1 row in set (0.00 sec)

2.9. Use keyring_okv plugin to create encrypted tables

When you create the first encrypted table, InnoDB will ask keyring_okv to generate the

primary key (AES-256) in KeyControl. This primary key is used to encrypt tablespace

keys. You can check the primary key in the Tenant KeyControl web interface using the

Objects page.

InnoDB also asks KeyControl to generate a key (AES-256) for the encrypting table. The

tablespace key is wrapped using the primary key and stored alongside the encrypted

table. For subsequent encrypted tables, only the tablespace key is generated and the

same primary key is used to wrap the tablespace key.

With KeyControl, you will see a complete audit trail if every time the primary key or

tablespace key is retrieved. You will have complete control on these keys. You can revoke

access to a key or disable it, to lock down your data at rest.

To create an encrypted table:

1. Log in into the MySQL database:

% mysql -u root -p<password>

2. Create the encrypted table with the following SQL:

CREATE DATABASE MySQL_TDE_Test;
USE MySQL_TDE_Test;
CREATE TABLE `test_encryption` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(15) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=latin1 ENCRYPTION = 'Y';

The Objects tab in Tenant KeyControl shows the that the key was created. For

example:

Oracle MySQL and Entrust KeyControl Integration Guide 10/15

You can also check the Audit Logs tab. You should see all the KMIP operations that

happened during that key creation process and retrieval. For example:

2.10. Test that encryption KeyControl is working

1. Log in into the MySQL database:

% mysql -u root -p<password>

2. Insert a record to the table that was created earlier:

mysql> USE MySQL_TDE_Test;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

mysql> INSERT INTO test_encryption VALUES (1, 'cleandro');
Query OK, 1 row affected (0.00 sec)

mysql> select * from test_encryption;
+----+----------+
| id | name |
+----+----------+
| 1 | cleandro |
+----+----------+
1 row in set (0.00 sec)

Oracle MySQL and Entrust KeyControl Integration Guide 11/15

3. Edit the MySQL configuration file and disable the keyring_okv plugin:

% sudo vi /etc/my.cnf
#early-plugin-load=keyring_okv.so
#keyring_okv_conf_dir=/usr/local/mysql/mysql-keyring-okv

4. Restart MySQL:

% sudo systemctl restart mysqld

5. Check if you can read the encrypted table:

% mysql -u root -p<password>

mysql> use MySQL_TDE_Test;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

mysql> select * from test_encryption;
ERROR 3185 (HY000): Can't find master key from keyring, please check in the server log if a keyring is loaded and
initialized successfully.

The table is not accessible because MySQL cannot get to the master key from the

keyring.

6. Re-enable the keyring in the MySQL configuration file and remove the comments you

added previously:

% sudo vi /etc/my.cnf
early-plugin-load=keyring_okv.so
keyring_okv_conf_dir=/usr/local/mysql/mysql-keyring-okv

7. Restart MySQL:

% sudo systemctl restart mysqld

8. Check you can view the encrypted table:

Oracle MySQL and Entrust KeyControl Integration Guide 12/15

% mysql -u root -p<password>

mysql> use MySQL_TDE_Test;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> select * from test_encryption;
+----+----------+
| id | name |
+----+----------+
| 1 | cleandro |
+----+----------+
1 row in set (0.00 sec)

This shows that the configuration of the keyring_okv plugin using Entrust KeyControl is

working.

2.11. Secure the MySQL database

The information below was taken from the following Security Technical Implementation

Guides (STIG) page and can be used as guideline to address confidentiality and integrity

of all information at rest in a MySQL database.

Group Title

SRG-APP-000231-DB-000154

Rule Title

The MySQL Database Server 8.0 must protect the confidentiality and integrity of all

information at rest.

Discussion

This control is intended to address the confidentiality and integrity of information at

rest in non-mobile devices and covers user information and system information.

Information at rest refers to the state of information when it is located on a secondary

storage device (e.g., disk drive, tape drive) within an organizational information

system. Applications and application users generate information throughout the

course of their application use.

For more information, see InnoDB Data-at-Rest Encryption in the MySQL online

documentation.

User-generated data, as well as application-specific configuration data, must be

protected. Organizations may choose to employ different mechanisms to achieve

confidentiality and integrity protections, as appropriate.

If the confidentiality and integrity of application data is not protected, the data will be

open to compromise and unauthorized modification.

Oracle MySQL and Entrust KeyControl Integration Guide 13/15

https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html

Apply appropriate controls to protect the confidentiality and integrity of data at rest in

the database.

Using SQL, determine if all data-at-rest is encrypted:

1. Check audit_log_encryption:

SELECT VARIABLE_NAME, VARIABLE_VALUE
FROM performance_schema.global_variables where variable_name = 'audit_log_encryption';

If audit_log_encryption is not set to AES, this is important.

2. Check binlog_encryption:

SELECT VARIABLE_NAME, VARIABLE_VALUE
FROM performance_schema.global_variables where variable_name = 'binlog_encryption';

If binlog_encrypt is not set to ON, this is important.

3. Check innodb_redo_log_encrypt:

SELECT VARIABLE_NAME, VARIABLE_VALUE
FROM performance_schema.global_variables where variable_name = 'innodb_redo_log_encrypt';

If innodb_redo_log_encrypt is not set to ON, this is important.

4. Check innodb_undo_log_encrypt:

SELECT VARIABLE_NAME, VARIABLE_VALUE
FROM performance_schema.global_variables where variable_name = 'innodb_undo_log_encrypt';

If innodb_undo_log_encrypt is not set to ON, this is important.

5. Check general_log:

SELECT VARIABLE_NAME, VARIABLE_VALUE
FROM performance_schema.global_variables
WHERE VARIABLE_NAME like 'general_log';

If general_log is not OFF, this is important.

Using SQL, find the encryption status for all MySQL table and tablespaces:

1. Check tablespaces:

Oracle MySQL and Entrust KeyControl Integration Guide 14/15

SELECT
`INNODB_TABLESPACES`.`NAME`,
`INNODB_TABLESPACES`.`ENCRYPTION`
FROM `information_schema`.`INNODB_TABLESPACES`;

If any tablespace does not have ENCRYPTION set to Y (yes), this is important.

2. Check innodb_redo_log_encrypt:

SELECT VARIABLE_NAME, VARIABLE_VALUE
FROM performance_schema.global_variables where variable_name = 'table_encryption_privilege_check';

If innodb_redo_log_encrypt is not set to ON, this is important.

Apply appropriate MySQL Database 8.0 controls to protect the confidentiality and

integrity of data at rest in the database:

sudo vi /etc/my.cnf
[mysqld]
audit-log=FORCE_PLUS_PERMANENT
audit-log-format=JSON
audit-log-encryption=AES

#Turn on binlog encryption
set persist binlog_encryption=ON;

#Turn on undo and redo log encryption
set persist innodb_redo_log_encrypt=ON;
set persist innodb_undo_log_encrypt=ON;

Enable encryption for a new file-per-table tablespace, ENCRYPTION option in a CREATE TABLE

statement. The following example assumes that innodb_file_per_table is enabled:

mysql> CREATE TABLE t1 (c1 INT) ENCRYPTION='Y';

To enable encryption for an existing file-per-table tablespace, specify the ENCRYPTION

option in an ALTER TABLE statement:

mysql> ALTER TABLE t1 ENCRYPTION='Y';

To disable encryption for file-per-table tablespace, set ENCRYPTION='N' using ALTER TABLE:

mysql> ALTER TABLE t1 ENCRYPTION='N';

To disable general_log:

SET PERSIST general_log = 'OFF';

Oracle MySQL and Entrust KeyControl Integration Guide 15/15

	Oracle MySQL and Entrust KeyControl Integration Guide
	Contents
	1. Introduction
	1.1. Requirements
	1.2. High-availability considerations
	1.3. Product configuration

	2. Procedures
	2.1. Installation overview
	2.2. Install the Entrust KeyControl Server
	2.3. Create the KMIP Tenant for Oracle MySQL in KeyControl
	2.4. Create the KMIP Certificates
	2.5. Install the Oracle MySQL server
	2.6. Install the keyring_okv plugin
	2.7. Import the KeyControl KMIP Certificates to the keyring_okv plugin
	2.8. Verify that the keyring_okv plugin is working
	2.9. Use keyring_okv plugin to create encrypted tables
	2.10. Test that encryption KeyControl is working
	2.11. Secure the MySQL database

